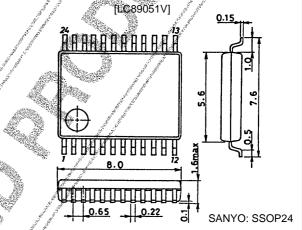
LC89051V

Digital Audio Interface Receiver

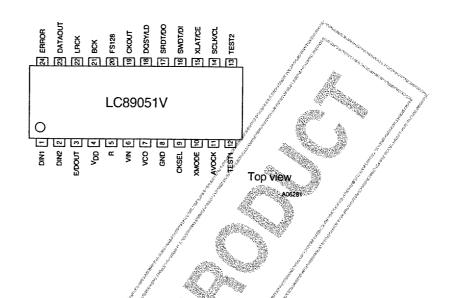
Preliminary

Overview

The LC89051V is for use in IEC958 format data transmission between digital audio equipment. This LSI is used on the receiving side, and handles synchronization with the input signal and demodulation of that signal to a normal format signal.


Features

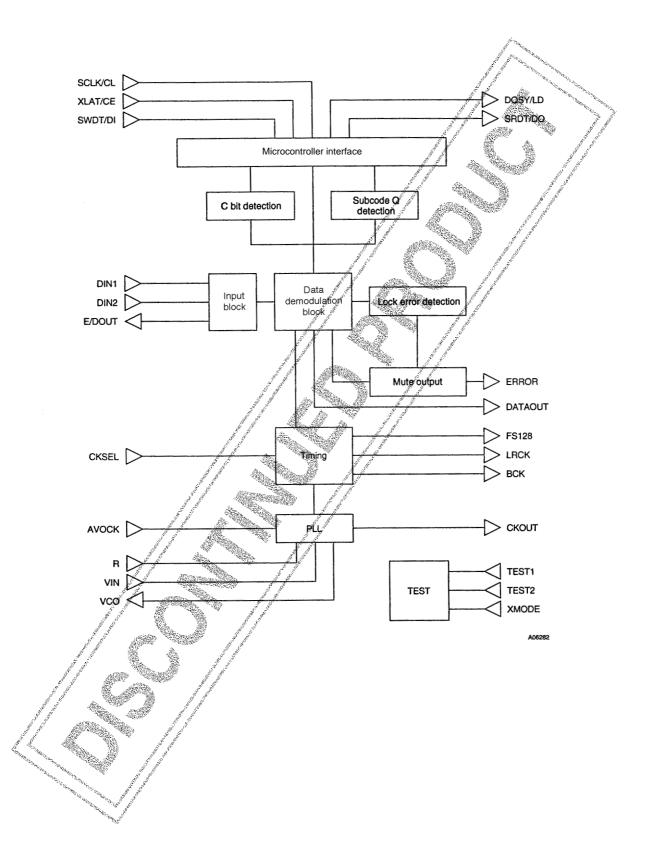
- On-chip PLL circuit synchronizes with the transmitted IEC958 format signal.
- Low-voltage operation (3.3 V)
- Provides 128fs, bit, and L/R clock outputs.
- System clock can be selected to be either 384fs or 512fs.
- Microcontroller interface code settings for different output types
 - Input pin, emphasis output, input bi-phase data output, and validity flag output settings
 - Audio data output format setting
 - Channel status output (32-bit output for consumer products)


 - Subcode Q output with CRC flags (80 bits)
 Start ID and shortening (skip) ID detection for DAT with subcodes
- The built-in VCO can receive at speeds up to twice fs only when operating from a 5-V power supply.
- Miniature package: SSOP-24

Package Dimensions

unit: mm 3175A-SSOP24

Pin Assignment



Pin Functions

Pin No.	Symbol	I/O	Description					
1	DIN1	I	Data input with built-in amplifier (for coaxial or optical module input)					
2	DIN2	I	ta input (for optical module input)					
3	E/DOUT	0	phasis, input bi-phase, and validity tag output					
4	V _{DD}	-	Power supply					
5	R	I	VCO gain control input					
6	VIN	I	VCO free-running setting input					
7	VCO	0	PLL low-pass filter setting					
8	GND	-	Ground					
9	CKSEL	I	System clock selection input (384is or 512fs)					
10	XMODE	I	Reset input					
11	AVOCK	I	PLL error lock avoidance clock input					
12	TEST1	I	Test input (Must be connected to ground in normal operation)					
13	TEST2	1	est input (Must be connected to ground in normal operation)					
14	SCLK/CL		licrocontroller interface clock input					
15	XLAT/CE		Microcontroller interface latch/chip enable input					
16	SWDT/DI	أتعريه فكم	Microcontroller interface write data input					
17	SRDT/DO	0	Microcontroller interface read data output					
18	DQSY/LD	0	Microcontroller interface subcode Q and ID synchronization output					
19	СКОИТ	O ^{RAC}	VCO clock output (free running, 384fs, or 512fs)					
20	F\$128	Q	128fs clock output					
21	BCK	> 0	Bit clock output					
22	🖉 ÁRCK 🔬	्ठ	L/R clock output (left channel = high, right channel = low)					
23	DATAOUT	0	Audio data output					
24	ERROR	0	PLE lock error mute output					

LC89051V

Block Diagram

Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		0.3 to +7.0	V
I/O voltages	V _I , V _O		-0.3 to V _{DD} + 0.3	V
I/O current	I _I , I _O		±20	mA
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg	ي. يور	55 to +125	°C

Allowable Operating Ranges

Parameter	Symbol	Conditions	min	, typ	🎤 max	Unit
Supply voltage	V _{DD}	<u>d</u>	30	5.0	5.5	V
Operating temperature	T _{OPR}			(3,3),** 	+75	C°

a Card

Electrical Characteristics DC Characteristics (1) at Ta = -30 to $+75^{\circ}$ C, V_{DD} = 4.5 to 5.5 V, V_S

Parameter	Symbol	Conditions	, fin	typ	max	Unit
Input high-level voltage	V _{IH} 1	*1	0.7 V _{DD}		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 1	*1 //	-0.3		0.3 V _{DD}	V
Input high-level voltage	V _{IH} 2	*2	0.8 V _{DD}		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 2	*2	-0.3		0.2 V _{DD}	V
Input high-level voltage	V _{IH} 3	*3	2.5		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 3	*3	-0.3		+0.6	V
Output high-level voltage	V _{OH}	I _{OH} ≠ −4 mA	V _{DD} – 2.1			V
Output low-level voltage	V _{OL}	I _{OL} = 4 mA			0.4	V
Current drain	I _{DD}	14 A A A A A A A A A A A A A A A A A A A			20	mA
Input amplitude	Vpp	*5	0.4		V _{DD} + 0.3	V

Note: 1. Applies to the CKSEL, AVOCK, TEST1, and TEST2 pms. CMOS levels.
 2. Applies to the XMODE, SCLK/CL, XLAT/CE, SWDT/DI pms. CMOS Schmitt inputs.
 3. Applies to the DIN2 pin. TTL Schmitt levels.
 4. V_{DD} = 5.0 V, Ta = 25°C, input data fs = 96 kHz
 5. Measured before the DIN1 pin input capacitor.

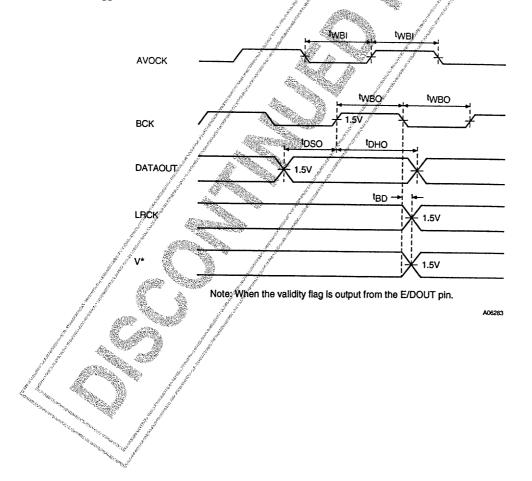
DC Characteristics (2) at Ta = -30 to +75 °C, V_{DD} = 3.0 to 3.6 V, V_{SS} = 0 V

			1			
Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level voltage	Vila1	*6	0.7 V _{DD}		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 1	/*6 [/]	-0.3		0.2 V _{DD}	V
Input high-level voltage	Kiir ™H / /	*7	0.75 V _{DD}		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 2	*7	-0.3		0.15 V _{DD}	V
Input high-level voltage	ViHa	*8	2.4		V _{DD} + 0.3	V
Input low-level voltage	V _{IL} 3	*8	-0.3		+0.3	V
Output high-level voltage	V _{OH}	$I_{OH} = -2 \text{ mA}$	V _{DD} - 0.8			V
Output low-level voltage	V _{OL}	I _{OL} = 2 mA			0.4	V
Current drain	I _{DD}	*9			10	mA
Input amplitude	Vpp	*10	0.4		V _{DD} + 0.3	V

Note: 6. Applies to the CKSEL, AVOCK, TEST1, and TEST2 pins. CMOS levels.
7. Applies to the XMODE, SCLK/CL, XLAT/CE, SWDT/DI pins. CMOS Schmitt inputs.
8. Applies to the DIN2 pin. TTL Schmitt levels.
9. V_{DD} = 3.3 V, Ta = 25°C, input data fs = 48 kHz

10. Measured before the DIN1 pin input capacitor.

AC Characteristics (Normal Mode) at $Ta=-30 \ to \ +75^{\circ}C, \ V_{DD}=3.0 \ to \ 5.5 \ V$

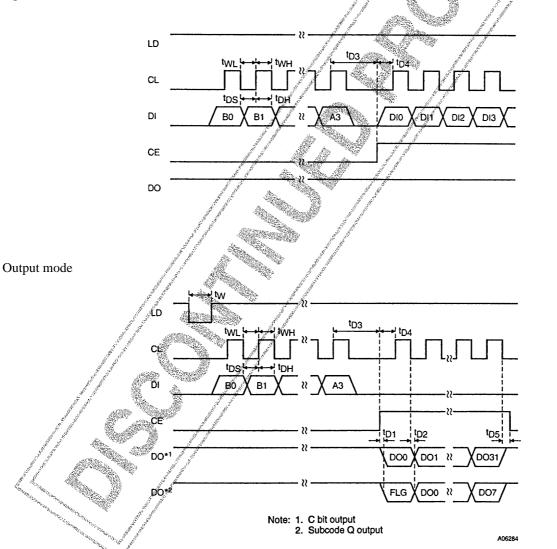

Parameter	Symbol	Conditions	min	typ	max	Unit
AVOCK input pulse width	t _{WBI}		10	É to		μs
	4	*11			50	MHz
VCO free-running frequency	[†] VCO	*12	al and		- 75	MHz
BCK output pulse width	t _{WBO}	fs = 48 kHz	160	in in	ALL	ns
Output data setup time	t _{DSO}		80	A.	and the second s	ns
Output data hold time	t _{DHO}		80			ns
Output delay	t _{BD}		<i>i² /</i> –10	0	المر 10 +10	ns

Note: $11.Ta = 25^{\circ}C$, $V_{DD} = 3.3$ V, with the circuit constants for standard speed operation in the sample application circuit. $12.Ta = 25^{\circ}C$, $V_{DD} = 5.0$ V, with the circuit constants for standard speed operation in the sample application circuit.

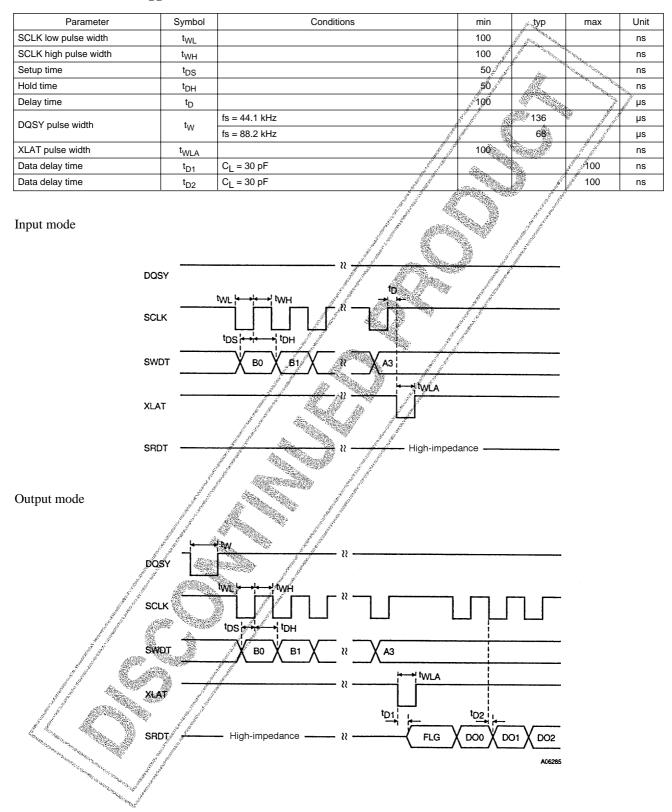
AC Characteristics (Double Speed Mode) at Ta = -30 to $+75^{\circ}$ C, $V_{DD} = 4.5$ to 5.5 V.

							l d		
Parameter	Symbol		Conditions	and a particular		min	,typ,*	max	Unit
AVOCK input pulse width	t _{WBI}			A CONTRACTOR OF THE OWNER	AND CO.	10	Service Careford		μs
VCO free-running frequency	f _{VCO}	*13		12				80	MHz
BCK output pulse width	t _{WBO}	fs = 96 kHz	and the	at the	No constant	80	Net The second se		ns
Output data setup time	t _{DSO}		and the set	<u>(</u>		40 🦯			ns
Output data hold time	t _{DHO}		No. of Concession, Name		1	40			ns
Output delay	t _{BD}		and a start of the			<i>f _</i> 10	0	+10	ns

Note: $13.Ta = 25^{\circ}C$, $V_{DD} = 5.0$ V, with the circuit constants for 2× speed operation in the sample application circuit.



And a start of the start of the


Microcontroller Interface Block AC Characteristics at Ta = -30 to +75°C, V_{DD} = 3.0 to 5.5 V (when CKSEL is low)

Parameter	Symbol	Conditions		min	typ	max	Unit
CL low pulse width	t _{WL}			100	C. S. C. S. S.		ns
CL high pulse width	t _{WH}			100	and the second	W AND THE .	ns
Data setup time	t _{DS}			50	Au.	A CARGE CONTRACT	ns
Data hold time	t _{DH}			50	ÅĽ.	and the second second	ns
CE delay time	t _{D3}			1.0	S. S. S.		μs
CL delay time	t _{D4}		Å	50		a state of the second	ns
CE delay time	t _{D5}		J. S.			100	ns
LD pulse width	tu	fs = 44.1 kHz	and the second second	and the second s	ang 136		μs
	t _W	fs = 88.2 kHz	and a second second		68	el de	μs
Data delay time	t _{D1}	C _L = 30 pF	and the second second	and the second		100	ns
Data delay time	t _{D2}	C _L = 30 pF			e de fe	100	ns

Input mode

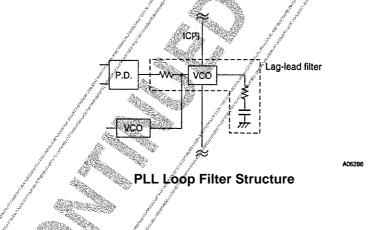
Microcontroller Interface Block AC Characteristics at Ta = -30 to $+75^{\circ}$ C, V_{DD} = 3.0 to 5.5 V (when CKSEL is high)

Functions

1. Data Input and Output (DIN1, DIN2, E/DOUT)

The DIN1 pin has a built-in amplifier, and can receive signals with an amplitude of about 400 mVp-p (coaxial input). The DIN2 pin is only for use in optical modules.

Note that although the data input pins are controlled by the microcontroller, DIN1 can be selected when a microcontroller is not used. The microcontroller interface pins must be tied low in such applications. The E/DOUT normally outputs channel status information. However, it can be set to output either the input bi-phase data or the validity flag by command codes from the microcontroller.


2. PLL (R, VIN, VCO, AVOCK)

This circuit includes a built-in VCO and supports sampling frequencies of 32, 44.1, and 48 kHz

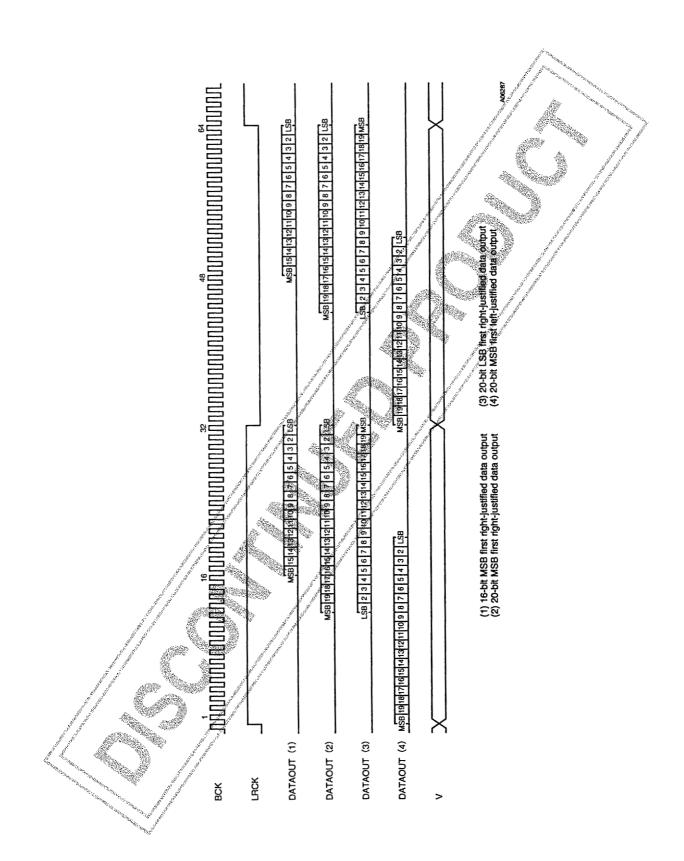
This LSI can also receive at the $2\times$ sampling frequencies of 64 kHz, 88.2 kHz, and 96 kHz, but only when operating from a 5-V power-supply voltage. However, the demodulated data and clock output during double speed reception follow the received sampling frequency, and the transmission format for $2\times$ -speed data must follow the IEC958 standard.

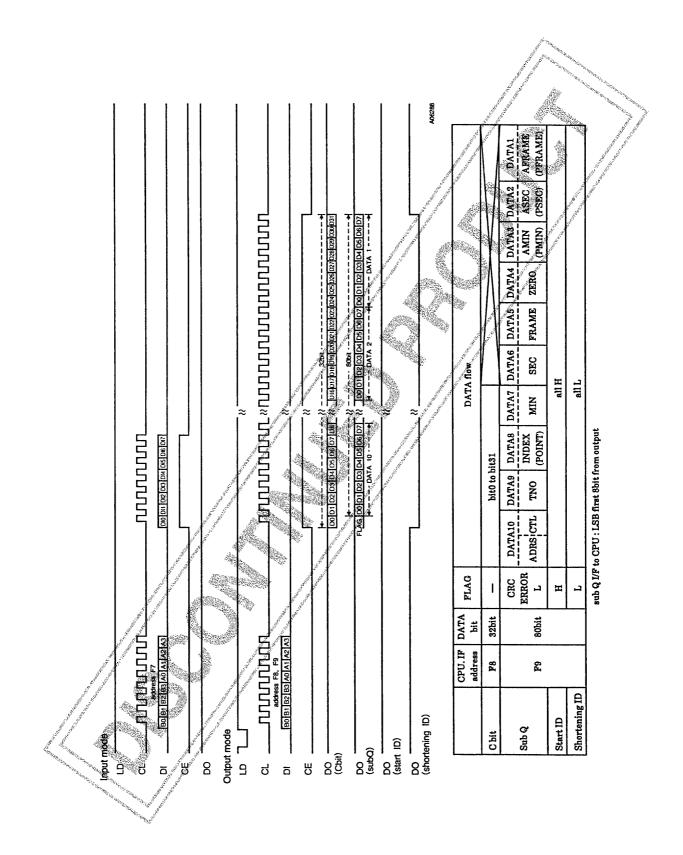
The built-in VCO is controlled by the resistors connected to the **R** and **VIN** pins.

The resistor connected to R functions as both the VCO gain control and as temperature compensation. The VIN pin sets the VCO free-running frequency. Recommended circuit constants are shown in the sample application circuit. Note that the VCO free-running frequency varies with temperature and with manufacturing variations between samples. The recommended circuit constants shown in the sample application circuit take these variations into account so that the PLL circuit lockup characteristics are not adversely affected. These values are not designed to reduce variations in the free-running frequency. The VCO pin is the PLL loop filter pin. The loop filter is formed by attaching an external capacitor and a resistor to this pin. See the sample application circuit for these circuit constants.

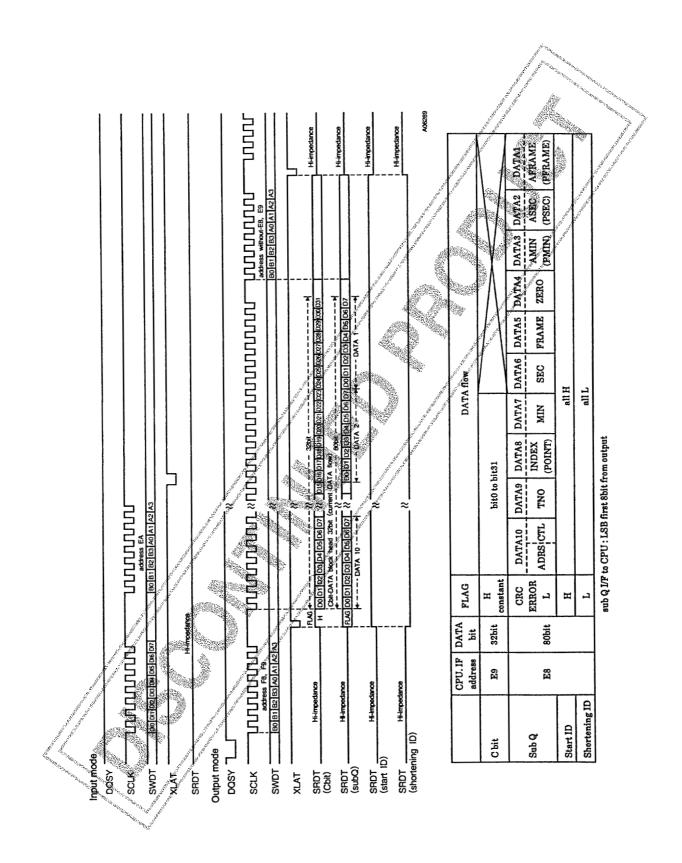
The PLL circuit will be reset within a fixed period when PLL lock pull-in fails if a continuously operating clock of no more than 50 kHz is input to the AVOCK pin. This allows incorrect PLL operation to be avoided.

3. Clock Settings and Output (FS128, BCK, LRCK, DATAOUT, CKSEL, CKOUT)


A 128fs clock signal is output from the FS128 pin. Figure 1 shows the output timing for the BCK, LRCK, and DATAOUT pins.


The CKOUT clock output is set by the CKSEL pin as listed in the table below.

	ÇKQUT	
	384fs clock output	
Harris and a start of the start	512fs clock output	


The microcontroller interface format is also set by CKSEL as listed in the table below.

CKSEL	Microcontroller interface
L	Figure 2
Н	Figure 3

Figure 2 Microcontroller Interface Timing 1

LC89051V

Figure 3 Microcontroller Interface Timing 2

Microcontroller Interface (SCLK/CL, XLAT/CE, SWDT/DI, SRDT/DO, DQSY/LD)

1. Data input and output addresses are allocated as follows:

Data input or output		Figur	e 2: M	icrocor	ntroller	Interfa	ace Tin	ning 1			Figure	e 3: Mi	crocor	ntroller	Interfa	ce Tin	ning 2	
Data input or output		B0	B1	B2	B3	A0	A1	A2	A3		B0	B1	B2	B3	A0	A1	A2	A3
Data input	F7	1	1	1	0	1	1	1	1	EA	0	1,4**	0	1	0	1	1	1
C bit output	F8	0	0	0	1	1	1	1	1	E9	1		0	1	0	و به الم	1	1
Subcode Q, ID output	F9	1	0	0	1	1	1	1	1	E8	0	<i>.</i> 0	0	3 N.	0	1	1	1

- 2. The input command codes control the following setting:
 - System stop
 - Data input pin setting
 - Input bi-phase data output selection
 - Validity flag output selection
 - Audio data output format setting

DI1: Stops VCO operation and thus stops the system.

DI1	L	Н
System	Operating	Stopped
		N 2 4

DI2: Selects which input data to demodulate.

DI2	L	Н Д
Data demodulation input	DIN1	DIN2

DI3 and DI4: Select the E/DOUT pin output

		5.5	22.2	S. 983
DI3				
DI4	L	ji ⊭	A, L	🖉 н 🥢
E/DOUT	Emphasis data output <i>∦</i>	Validity flag output	DIN1 input data output	DIN2 input data output

DI5 and DI6: Set the audio data output format.

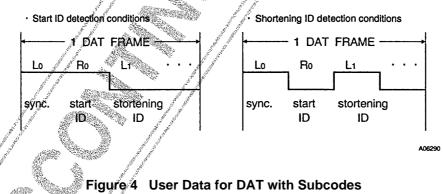
	and the second sec		ta di	l
DI5		L	الكور تعليهم	4
DI6	🖉 L کور	E H ≥ >	JE" John	Н
DATAOUT	16-bit right justified MSB tirst	20-bit right- justified LSB first	20-bit right- justified MSB first	20-bit left- justified MSB first
1 / .cao **?cad? / /				

All bits are set low immediately after XMODE is switched from low to high. DI0 and DI7 are not used.

- 3. The following output settings can be controlled:
 - Channel status (C bit) output
 - Subcode Q data output
 - Start ID and shortening ID detection for DAT with subcodes

C bit output

- This IC only handles the first 32 bits.
- The flag is fixed at the high level (only when CKSEL is high), and the data format is LSB first
- Error and update checking is not applied to the data.
- The internal shift register is reset if a PLL lock error occurs.
- Since the channel status information consists of 192 frames, a fixed period must be provided between data readout operations.


 $\frac{1}{fs} \times 192$ (ms) < (the interval between data readout operations)

Subcode Q output

- Subcode Q can be read out after the fall of the DQSY/LD signal. Also note that the data is updated every time this signal falls. However, this signal will not be output (fall) unless 96-bit subcode Q data (including the CRC check bits) is input.
- The flag outputs a high when the CRC check passes, and low if the CRC check fails. Besides, the shift clock SCLK is required to be input regardless of the CRC flag status after latch pulse input.
- The bit order is LSB first within each byte of the 80 bits of subcode Q data.

ID detection

- The start ID and shortening ID are only detected when the DAT category code (1100000L) is received.
- These IDs are detected as follows:
 - A low pulse is output from DQSY/LD if a start $1D(\mathbf{R}_0)$ or a shortening ID (L₁) is detected following a sync signal (L₀).
 - After this signal, data can be read out from SRDT/DO by inputting the same address value as that used for subcode Q data to SWDT/DI

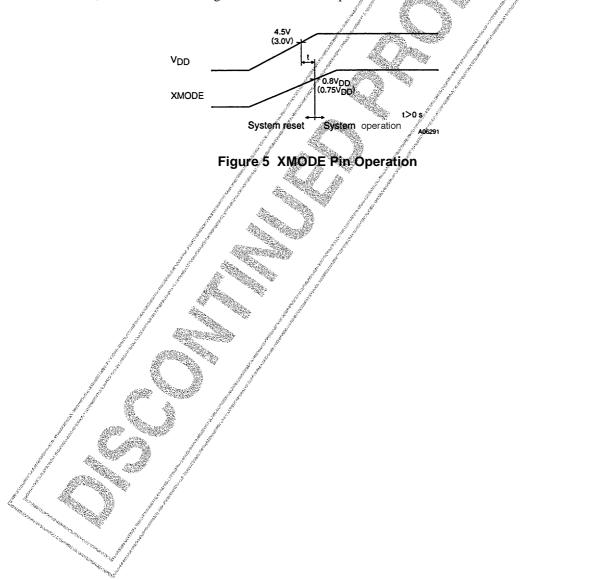
• The table below shows the relationship between the sync signal (L_0) , the start ID (R_0) , the shortening ID (L_1) , and the data output

	A STATE AND A STAT	32° 2°	
A.	(L ₀): SYNC	Start H	Н
and the second	(R ₀); Start ID	H N	L
	(L1): Shortening ID	L L	Н
	Flags + 80 data bits	all H	all L
	Detected ID	Start ID	Shortening ID

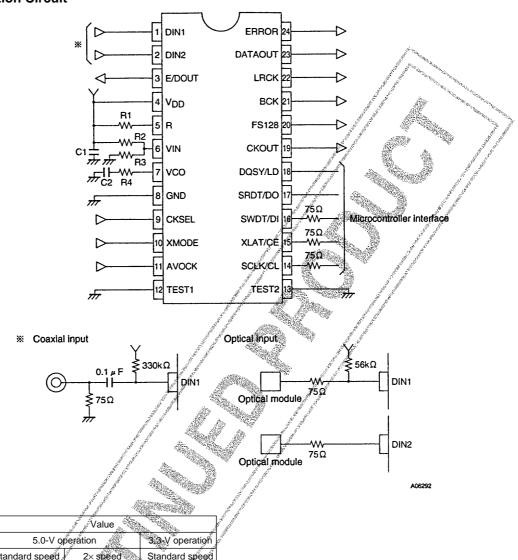
• Output pins

The output scheme used for SRDT/DO differs depending on the microcontroller interface format selected by

CKSEL	Format	SRDT/DO	
L	Figure 2	High open-drain output	
н	Figure 3	Three-state output	


Error (ERROR)

The ERROR pin goes high if there is an error in the input data or if the PLL is unlocked. It holds the high level for about 100 to 300 ms after data demodulation returns to normal and then goes low. The table below lists the data processing when an error has occurred.


				and the second se	and the second s
Type of error	DATAOUT	C bit	Sub Q	م ^ا الم	E/DOUT
Up to 8 consecutive parity errors	Previous data value	Output	Output	Øutput	
Over 8 consecutive parity errors	L	Output	Output	Output	Output
PLL lock error	L	L	L		L /
			S.R.	5 ⁶	Els I I

System Reset (XMODE)

Normal system operation is started by setting XMODE high after the power supply has risen above at least 4.5 V (3.0 V). After power is applied, the system will be reset if a low level is applied once more to the XMODE pin. If XMODE is set low, the VCO free-running oscillator clock is output from CKOUT.

Sample Application Circuit

Circuit constants

			Value	
Item	Symbol	5.0-V oj	33-V operation	
		Standard speed	2× speed	Standard speed
	R1	24 kΩ	24 kΩ	24 kΩ
Resistors	R2	5.1 kΩ	5.1/kΩ	5/1 kΩ
1103131013	R3	5 1 kΩ	12 kΩ	5.1 kΩ
	R4	150 Ω	150 Ω	j _ 150 Ω
Conocitoro	C1	0.1μF	Q 1µF	0.1µF
Capacitors	C2 🎤	0.01 µF	0.01 μF 🦯	0.01 μF
	and the second second		<u>%</u> //	

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - O Acception responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.